
PHYS 705: Classical Mechanics
Central Force Problems II
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Orbits in Central Force Problem

Suppose we’re interested more in the shape of the orbit,
(not necessary the time evolution)

Then, a solution for r = r(q ) or q = q (r) would be more useful!

First, let try to get r = r(q ):
2

3

l dV
mr

mr dr
 Start with the r EOM:

(NOTE: switch to V notation 

since we will be using u as 

inverse radius later)We also have the angular momentum equation:
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Orbits in Central Force Problem

Substituting this relation into our r equation, we have,
2

3

d dr l dV
m
dt dt mr dr

     
 

To simplify this further, it would be useful to introduce a coord trans:
1

u
r


( )dV r du dV

dr dr du
  RHS: by chain rule, we have

but,
2

1du
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d l d

dt mr dq
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d l dr l dV

d mr d mr drr q q
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mr d r d mr drq q
     
 
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Orbits in Central Force Problem
2 2

2
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   
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Putting the two sides together, we have

Now, the LHS:

2
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dq
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  
 
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d l du uq

  
    

         
ODE for u(q ) or r(q )

2

2

3

2

2

1 dr

d

l d

d mr r

l

m rqq
   
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Orbits in Central Force Problem

Consider a turning point (apside) at              with ICs:    

In this form, we can get a qualitative insight into the orbit’s symmetry:

2 2

2 2
with ' ,  we still have 

'

d d

d d
q q

q q
  

0 0q 

Integrate the previous equation forward let say in the  

+q direction and we get ( )r q( )r q

( )r q

0 0q 

apside
Now, since 

Integrate the same ODE backward in the -q direction 

with the same ICs will give the same r values, i.e., 

( ) ( )r rq q  

Orbit is symmetric about the apsides!

 0 0
(0) and 0u u du dq 

(turning pt) 

5



apside

apside

Orbits in Central Force Problem

Then, to construct the full orbit, one can reflect this basic segment along 

the axis connecting the apside and the origin symmetrically.

So, we only need to find the orbit from one apside to the NEXT.
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Orbits in Central Force Problem

This form is useful if you want to solve for the force law for a 

given known orbit                 .   (homework)

If you express the ODE back in terms of r and the force F(r), you get,

2
2

2 2 2

1 1 1
( )

d m d m
V r F r

d r r l du u lq
                
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( )
( )

1 1

dV r du dV
F r

dr dr du

d
V

r du u

   

             

recall:

( )r r q

Example:  let ( 0 for physical orbits,  needs to be +)r ke k rq 
(the orbit is a spiral: + out and – in )

Plug in 1st term in ODE:  
2 2 2

2

1 1
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d d
e e

d ke k

e
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d k

d

d ke

q 





q

q
q

q


q q

 
q





     
 

    
 
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Orbits in Central Force Problem
So, we have

2
2

2

2 2
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1
( )

1
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m
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r r l

l
F r

r m





  

  
   

  

So, for the prescribed orbit                  , the required force law is: 

(an inverse cubic force law)

r keq

 2 2

3

1
( )

l
F r

mr

 
 
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There is also an alternative way to get the inverse orbit equation                  by 
solving  a quadrature.

Orbits in Central Force Problem
Instead of solving for                   from the previous 2nd order ODE 

Recall the r equation obtained from conservation of energy equation:

To eliminate t in the equation, note that                           by chain rule again, 
dr dr d

dt d dt

q
q



( )r r q

( )rq q

2

2

2
( )

2

dr l
r E V r

dt m mr

 
    

 


This can be rewritten using the angular momentum equation,

2
2

( : )
dr dr dr

note mr l
d l

dtd d dmrt
q

q q
q

  
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Orbits in Central Force Problem
Substituting this into our     equation, we have

Rearranging terms and integrating both sides gives, 

r

2

2 2

2
( )

2

l dr l
E V r

mr d m mrq
 

   
 

The right hand side can be integrated by quadrature.

0

0
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2
2

2
2

r

r

ldr

l
mr E V

m mr

q q 
 

  
 





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Orbits in Central Force Problem

can be solved in terms of elliptic 
functions

1( ) , . ., ( )n nF r r i e V r r  1. If 

Then, the integral can be integrated (in closed form) in several cases: 

n =1, -2, -3: can be solved in terms of trig functions.

n = -2  is the Kepler’s problem
n = 1    is the harmonic oscillator

5,3,0, 4, 5, 7n    

3 5 1 5 7
, , , ,

2 2 3 7 3
n      

or

Comments:
0

0
2

2
2

2
2

r

r

ldr

l
mr E V

m mr

q q 
 

  
 





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Closed Orbits

2.  This form of the equation is also useful in determining whether 
or not orbits are closed, i.e. if they eventually return to where 
it started and retrace the same path

 Recall we showed that the orbit is symmetric about its apsides

 So the angular change in q in going from rmin to rmax then rmax

back to rmin is

Comments:

max

min

2
2

2

2
2

2

r

r

l
ldr mr E V

m mr
q

 
    

 





rmin
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q

0

0
2

2
2

2
2

r

r
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l
mr E V

m mr

q q 
 

  
 





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Closed Orbits: Bartard’s Theorem

 If                              , where          is rational, then the orbit closes 

after b cycles of:                                    .  And, the orbit will have gone

Comments:

rmin

rmax

q

2
a

b
q      

 
a

b

In this example,              , the orbit is a closed 

ellipse. 

1

2

a

b


min max minr r r 

around  the center-of-force a times.
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Closed Orbits: another example

rmin

rmax

q

Another example with              : the orbit 

is a closed ellipse. 

1
a

b


14

Bartard’s Theorem (1873) states that only the 

inverse square force (n = -2) and Hooke’s law 

(n = 1) give rise to closed orbits.

(We won’t prove it but we will give a favor of it 
now.)



(Note: The                  term in V ‘ (r) is “repulsive” so that an attractive 

potential V(r) is needed to “create” a potential well.)

Stability of Circular Orbits

- For any attractive potentials, a (bounded) circular orbit is always possible for 

the right choice of E and l.

2

22

l

mr


This circular orbit will occur at r values where the effective potential V ’(r) has 

its extrema (equilibria).

'V

r

1E

2E

equilibria

1r
2r

For E = E1,2, orbit will be a 

circular orbit at r = r1,2.

l determines the shape of V ‘(r)
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Stability of Circular Orbits

- A given circular orbit is stable if:

1,2

'
0

r r

dV

dr 



'V

r

1E

2E

equilibria

1r
2r

AND
1,2

2

2

'
0

r r

d V

dr




So, for this example, the circular 

orbit at r = r2 will be stable and the 

one at r = r1 will not be.

- Consider a general power law attractive central force:

( )
n

k
F r

r
 

1

1
( )

1 n

k
V r

n r  


with
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Stability of Circular Orbits

Substitute              from the top into the bottom equation, we have,

- Applying the condition for stable circular orbits:

2

1 2

1
'( )

1 2n

k l
V r

n r mr  


0

2

3
0 0

'
0

n
r r

dV k l

dr r mr

  1  3
0 2

n mk
r

l
 

0

2 2

2 1 4
0 0

' 3
0

n

r r

d V nk l

dr r mr


   2
2

3
0

3
0

n

nk l

r m  

and the effective potential is:

 3
0
nr 

n k
2l

m k

23
0

l

m

 
  

 
 

2

3 0
l

n
m

 
  

 
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Stability of Circular Orbits

is required for stable circular orbits!

- Now, we consider the situation if the orbit is slightly deviated from the stable 

circular orbit.

For convenience, we rescale the force law by m such that: 

3n 

We want to analyze its oscillations about the circular orbit…

The red boxed equation implies that: 

( ) ( )
dV

F r mg r
dr

   

2 0
dV

mr mr
dr

q  

so that the r equation of motion is given by: 

2 ( )r r g rq  
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Stability of Circular Orbits

- Now, we consider the situation when the orbit was  initially at             and we 

apply a small perturbation x to it, i.e.,

Substituting the constant angular momentum: 

Under this small perturbation, we want to approximate: 

2

2 3
( )

l
r g r

m r
  

2l mr q 

0r r

0r r x 

( : )note r x 
 

2

032
0

( )
l

x g r x
m r x

   




1
 3 3 3

0 00 3
0

0

1 1 1
1 3

1

x

r rr x x
r

r

 
   

    
 

 

(click)
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Small Perturbations of a Circular Orbit

0r x

0r

20



- Note, ON the circular orbit (            ), we have 

Stability of Circular Orbits

- Putting these two approximations back into our ODE for the perturbation x,

0r r 0x x x   

 
2

0 02 3
0 0

1 3 ( ) '( )
l x

x g r g r x
m r r

 
     

 


2
0

0 0( ) ( )
r r

dg
g r x g r x

dr 

  

2

02 3
0

( )
l

g r
m r



21
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2

032
0

( )
l

x g r x
m r x

   




1
 3 3

0 00

1 1
1 3

x

r rr x

 
  

  



- This looks like the harmonic oscillator equation with natural frequency 

Stability of Circular Orbits

- Putting this back into the perturbation equation, we have,

0( ) 1x g r 0
0

3 ( )
x

g r
r

 
   

 
0'( )g r x



0
0

0

3 ( )
'( ) 0

g r
x g r x

r

 
   

 


2 0x x  with 2 0
0

0

3 ( )
'( )

g r
g r

r
  
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- If               , this has the general oscillatory solution: 

The perturbation x will exponentially grow or decay in time  

 circular orbit will not be stable !

Stability of Circular Orbits
2 0 

( ) i t i tx t Ae Be  

0
0

0

0

0 0

3 ( )
'( ) 0

'( )3
0

( )

g r
g r

r

g r

r g r

 

 

- If               , then       is imaginary and the solution will no longer be oscillatory2 0  

- So, for stability of the circular orbit, we need               :

0

0 0

'( )3
0

( )

F r

r F r
 

2

0 2 3
0

we used  ( ) 0
l

g r
m r

 
  

 

2 0 

23



- Again, using a power law force law: 

Stability of Circular/Closed Orbits

( ) nF r kr 

( 1)
0

0 0

0 0 0

3
0

3 (3 )
0

n

n

nkr

r kr

n n

r r r

 

 



  

- We have,

- Again, we have the condition             needed for stable circular orbit.3n 

- One step further, in order for us to have closed (but slightly off circular) orbits

 , the angular speed of the deviation from the circular orbit, 

must be commensurate with the angular speed of the circular 

orbit  itself,      .0
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Small Perturbations of a Circular Orbit

0r x

0r

25

The blue orbit oscillate as it goes around the center of force and 

it closes back onto itself.

0 

  one oscillation 
of the ripple

one full cycle 
around the 
center



- Let consider this further.  On the circular orbit, we have 

Stability of Closed Orbits

2
0 0 0 0( ) ( )mr F r mg r   

From the r equation of motion, we can calculate this      ,

- For closed orbits, we then need,

00, ( )r constq  

0

2
0 0 0( )g r r 

1/2

0
1/20

1/20 0 0

00 0

0

3 ( )
'( )

'( )
3

( ) ( )

g r
g r

r r g r p
g r g r q
r

 


    
      
   
  

p,q must be integers

2 ( )mr mr F rq 
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Bartard basically repeated a similar analysis by including higher order 

perturbation terms to show that for all orbits (not necessary small 

deviations from a circular orbit) to be closed,  n must be -2 or -1. 

Bartard’s Theorem Again

Again, consider a power law force law: ( ) nF r kr 

   
1/21/2 1

1/20 01/2 0 0

0 0 0

'( )
3 3 3

( )

n

n

r nkrr g r
n

g r kr

 


 



  
             

Check: Both                    give rational solutions and they will give closed orbits !2, 1n  

p

q
?

( )F r kr 2
( )

k
F r

r
 
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